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Bound and resonant states in Coulomb-like potentials 
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Abstract. The potential separable expansion method has been generalised to calculating 
bound and resonant states in Coulomb-like potentials. The complete set of Coulomb- 
Sturmian functions was taken as the basis to expand the short-range potential. On this 
basis the matrix elements of the Coulomb-Green functions have been given in closed form 
as functions of the (complex) energy. The feasibility of the method is demonstrated by a 
numerical example. 

1. Introduction 

In this paper we generalise a powerful approximation method, the potential separable 
expansion ( PSE) method for calculating bound and resonant states in Coulomb-like 
potentials. The method was introduced by R6vai (1975) and was rigorously founded 
by Gyarmati et a1 (1979). In these papers the advantages of the method compared 
with the other procedures were demonstrated and the relations to other methods were 
also cleared up. The PSE method was subsequently applied to various physical prob- 
lems, namely to calculation of the bound states in short-ranged spherical (RCvai 1975, 
Gyarmati er a1 1979) and deformed (Gyarmati and Kruppa 1982) potentials, to the 
problem of two particles moving in a potential (Gareev er a1 1979), to the quantum 
mechanical two-centre problem (Gareev et a1 1977), to the binding energy of triton 
(Truhlik 1978) and was generalised to resonant (Gamow) (Gyarmati er a1 1984, Kruppa 
and Papp 1985) and scattering states (R&vai er al 1985). The method was also applied 
to calculating bound and resonant states in the framework of the orthogonality condi- 
tion model (Pi1 1985). 

The philosophy underlying the method is the following. We split the Hamiltonian 
H into two parts, H = Ho+ H’ ,  where Ho is responsible for the asymptotic behaviour 
of the system and H ’  is the short-range interaction. The bound and Gamow states are 
the solution of the homogeneous Lippmann-Schwinger equation 

I+) = GO(E)H’I+) (1.1) 

belonging to the real and complex eigenvalues, respectively, where Go( E )  = [ E  - HO]-’ 
is the Green operator of Ho. The PSE method takes the interaction H ‘  as a sum of 
separable terms 
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where {l i )}  is an orthonormal basis. So, instead of solving ( l . l ) ,  we solve the equation 

and the solutions of (1.1) are approximated by the solutions of (1.3), where N is an 
appropriate finite number. Equation (1.3) can be reduced to a system of homogeneous 
algebraic equations 

k = 0 ,  1 ,..., N (1.4) I N 

8,- (k lG'(E)l i ) ( i lH' l j )  Cy=O 
j = O  

where Cy = ( j l+") .  Equation (1.4) is solvable if and only if 

I N 

8, - (k lGo(E)l i ) ( i lH' l j )  = 0. 
i = O  

D ( E )  is just the Fredholm determinant of (1.3) and its zeros give the eigenvalues E ? .  
The index a stands for the quantum numbers of the states. According to (1.3), in the 
PSE method the wavefunction belonging to the eigenvalue E :  appears as 

where b z  = Z F o  ( i1H ' l j )Cs .  Since the coefficients Cs are determined uniquely within 
a factor, the coefficients b: can be fixed by the normalisation of the wavefunction 

In the PSE method only the asymptotically irrelevant short-range potential is 
approximated, so if the calculation of the matrix elements (ilGolj) and the vectors 
G'li) do not contain approximations and the exact energy is well approximated, the 
wavefunction has the correct asymptotic behaviour. This advantage is especially 
striking in comparison with the method based on the expansion of the wavefunction 
(WFE) on a basis. In the WFE method the total Hamiltonian is truncated and the 
asymptotics of the wavefunction is determined by the asymptotics of the basis functions. 

The various applications proved that the PSE method is an efficient approximation 
method. It is especially useful when the asymptotic part of the wavefunction plays an 
important role. In the previous applications the whole interaction was short-range 
type, i.e. the H o  was just the kinetic energy operator Ho and Go was the free Green 
operator Go. The harmonic oscillator (HO) wavefunctions were used as a basis and 
the matrix elements of the operators Go and Gi and the vectors GoIi) were given in 
closed forms. 

The Gamow states are not normalisable in the conventional sense, so they do not 
belong to the Hilbert space (Berggren 1968). The handling of Gamow states requires 
the use of a generalised inner product: the Gamow vector in bra position is to be 
substituted by its adjoint. In evaluating the generalised inner products needed for the 
PSE method we analytically continued the integrals from the physical energy sheet to 
the complex zero of D ( E )  on the unphysical sheet (Kruppa and Papp 1985). 

The aim of this paper is to generalise the method in another direction, namely to 
the case of the long-range Coulomb-like interactions. A Coulomb-like potential V can 
be written in the form 

v =  v,+ v, (1.8) 
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where V, = ZlZ2e’ /  r is the pure Coulomb potential and V, is a short-range potential. 
In this case the asymptotic motion is determined by the kinetic energy and the potential 
V,, so the bound and resonant states developing in the Coulomb-like potentials are 
solutions to the homogeneous Lippmann-Schwinger equation 

where G ‘ ( E )  = (E  - Ho-  VJ’. So our task is to find a basis that makes the exact 
calculation of the matrix elements of the operator G‘ and of the vectors G‘li) possible. 

I$) = G‘(E)  VSl$) (1 .9)  

2. PSE method for Coulomb-like potentials 

For the sake of simplicity we are concerned in the following with spherical potentials. 
The radial wavefunction U/ belonging to the Ith partial wave satisfies the Lippmann- 
Schwinger equation 

uy( k, r )  = jOm dr’ g f (  k, r, r ’ )  V,( r f )uI(  k, r f )  (2 .1)  

where k = [ ( 2 m / f i 2 ) E ] ’ ”  is the wavenumber, g f (  k, r, r ’ )  is the radial partial wave 
Coulomb-Green function 

1 “  1 
457 / = o  rr 

( r lG‘(k) l r ’ )=-  (21+1)g; (k ,  r, r ’ ) y P / ( i -  ?) 

and i is a vector of unit length parallel to r, while P/ is the Legendre polynomial. The 
radial partial wave Coulomb-Green function can be given in the form 

(2 .3)  
where c p f (  k, r ) ,  f f (  k, r )  and 9/( k )  are the regular Coulomb function, the irregular 
Coulomb function and the Coulomb-Jost function, respectively, and r< = min( r, r ’ ) ,  
r> = max( r, r ’ )  (see, e.g., Newton 1982). According to (1 .6)  and ( 2 . 3 )  the wavefunction 
U/( k r ,  r )  is a linear combination of the functions 

g f ( k ,  r, r ’ )  = -cpf(k, r < ) f l ( k  r>) / .%(k)  

(rlgT(k,N)li)- Iom dr’ cof(k,N, r c l f l ( k , ” ,  r> ) ( r ’b ) .  (2 .4)  

It can be seen that these functions tend to zero as the regular Coulomb function and 
tend to infinity as the irregular Coulomb function. That is, the behaviour of the function 
(r lgf(kr)l i )  at zero and at infinity is the correct Coulomb-like behaviour. This 
means that if only the short-range potential is taken in the separable form and equation 
(1 .9)  is solved without any further approximation the main advantage of the PSE method 
is retained, i.e. it gives the wavefunction with correct asymptotics. 

The matrix elements of the Coulomb-Green operator between bound state hydro- 
genic functions have been calculated for describing two-photon processes in a Coulomb 
field (Zon et a1 1969) and for calculating the lower bound of an atomic Hamiltonian 
(Hill and Huxtable 1982). Unfortunately, the bound state hydrogenic functions do 
not form a complete set. Therefore, we choose another set, which is very similar to 
the hydrogenic functions: the Coulomb-Sturmian (cs) functions, i.e. the Sturm- 
Liouville solutions of the hydrogenic problem ( Rotenberg 1970, Blinder 1984). In 
coordinate representation they are given in the form 



where n goes from zero to infinity, b is a scaling parameter and the functions Lil+I 
are the associated Laguerre polynomials (ErdClyi et a1 1953). The functions Snr satisfy 
the differential equation 

and the relations 

1 
r 

dr Snl( r )  - Snflr( r )  = 6,,& (2.7) 

i.e. these functions are orthogonal and form a complete set with respect to the weight 
function (rlAlr‘) = 6( r - r’)/r.-  

Let us define a new set: {Id)} = {A1’21n1)}. The 12) form an orthonormal basis, since -- - - 
(nlln‘l’)  = (n1lAln’I’) = 6,,&~ (2.9) 

(2.10) 
n = O  n=O 

For the sake of an analytical calculation of the matrix elements of the Green operator 
we rewrite the Lippmann-Schwinger equation. For the vector 

ICr)  = A1/21ul) (2.11) 

(2.12) 

(2.13) 
the Lippmann-Schwinger equation 

161) = g’rvslu’l) (2.14) 

holds. 
Let us expand the potential V, in terms of the basis {lz)}. To construct the Fredholm 

determinant 0, we have to calculate the matrix elements (nll V,ln’l‘) and ( n l l i f l n ‘ l ’ ) .  
Using the well known recurrence relation of the Laguerre polynomials, we can derive 
a relation between the neighbouring matrix elements of the operator Vs: 

[ ( n + 1)  ( n + 1 + 2)]’/2( V,l E) - [ ( n ‘ + 1 )( n + 1’ + 2)]1’2(zl v,l E i l ’ )  
= [ 2( n - n ’) + 4( I - l ’ ) ] ( q  V s 1 E )  - [ n ( n + 21 + 1 )y( n - 1 I /  V,l.’r) 

+ [n‘(n’+21+ l ) y ( z I  V,ln’- 1I’). (2.15) 
This formula tells us that all matrix elements can be derived from the tridiagonal ones, 
which can always be determined by numerical integration. 

Starting from the identity 1 = g f A - 1 / 2 ( E  - Ho- Vc)A-’ /2  and using (2.6) and the 
relationship 

1 1 
26 2b 

( n ’ l l n l ) =  L ’ ( n  + I +  1 )  - & ‘ , , + I  -[(n + l ) ( n  +21+2)]1/2-6,,,.-, - [n(n +21+ l)]I/2 

(2.16) 
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we arrive at a recurrence relation for the vectors iFl2) 
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and for the matrix elements (zlifl%) 
(2.17) 

(2.18) 

Note that these equztions are valid even in case of n = 0 so all&he Eatrix element-s 
and functions (rlg’flnl) for the wavefunction can be calculated if ( O l l i f l O 1 )  and (rli;lOl) 
are at our disposal. 

The matrix element (Zlg’$) can be determined by calculating the double integral 

- -  
(Ollg;101) = GL = loa lom d r  dr‘ Sor(r)gF(r, r‘)Sol(r’)/rr’. (2.19) 

By performing the x = 2br and x’ = 2br‘ substitutions and using (2.5), we arrive at the 
integral 

dx dx’exp( -+)(xx‘)‘g;(x, x’) (2.20) 

which is very similar to the integral evaluated by Zon et a1 (1969) and Hill and Huxtable 
(1982). For future reference we sketch the evaluation of the integral (2.20) following 
Zon et a1 (1969). 

The Coulomb-Green function can be given in the form 

mav T ( 1 -  v +  1 )  
gf(x, x’) = -7 

f i  r (21+2)  

where a = f i 2 / m Z l Z 2 e 2 ,  U = l/ika, A = 2ba and A and W are the regular and irregular 
Whittaker functions, respectively. Using the integral representation of the product of 
the Whittaker functions (Buchholz 1969) 

2) w”,r+l/2( 2) 
~ ( X X ‘ ) ’ / ~  r (21+2)  

AV r ( i - v+i )  
- - Im dy exp( -% cosh y ) 

) x (coth y /2 )2” f2r+l (  sinh y (2.22) 



where i is the modified Bessel function of integer order, we can carry out the integration 
with respect to x’ (see Gradshteyn and Ryzhik 1965) 

x (coth y / 2 ) 2 ” i 2 1 + l  (’(::”* sinh y )  

) x 1 + ( ~ A v ) ~ + A v  cosh y 
Jom Iom dx dy x21+’ exp( - - mAv - -- 

bfi2(21+ l ) !  AV fAv+coshy  

x (sinh y)2“1(cosh ~ / 2 ) ~ ” ( f A v  + cosh Y ) - ~ ‘ - ~ .  ( 2 . 2 3 )  

Now the integration with respect to x and the substitution t = [tanh ~ / 2 ] ’ / ~  lead to the 
expression 

Using the well known integral representation of the 2F,  function (Abramowitz and 
Stegun 1970) we arrive at the final result 

221+2(Av)21+3 
2 1 + 2 , 1 - ~ + 1 ; 1 - ~ + 2 ;  1 -  bfi2 ( I + A v / ~ ) ~ ’ + ~  I - v + l  

G&=---- 

(2 .25)  

The restriction means that the result is valid only on a restricted area of the complex 
v or k plane, but it can be continued analytically to the whole complex plane, except 
for the branch cut from 0 to -im, by the aid of the linear transformation formulae of 
the *F1 function (Abramowitz and Stegun 1970).  

For the calculation of the radial wavefunction ( 2 . 1 )  with the help of (2 .17)  the 
knowledge of the function ( r I A - ” * ~ $ ? )  is required. This function can be given by 
evaluating the interval 

1 
r 

( r ~ A - ” z ~ f ~ ~ )  = 9; = dr’ g f (  r, r ’ )  7 Sol( r ’ )  

dxgf(x,  x’)x’l exp 
[ ( 2 I +  

- - ( 2 . 2 6 )  

Here we can follow the method used in the calculation of G&. Using (2 .22)  the integral 
can be given in the form 

91 - - m Iom JOmdx’dyx1”exp( ---[fAvx’+(x+x’) 1 coshy] 
- f i  b [  (21 + 1 ) !]‘I2 AV 

x (coth y / 2 ) 2 ” x ” 7 1 ’ 2 ~ 2 1 + l (  (2 .27)  

The integration with respect to x’ can be performed in a way similar to ( 2 . 2 3 ) .  With 
the substitution 

tanh’ y / 2 )  
1 - A v / 2  

t = ( 1  - tanh’ y / 2 )  1 + ( 1 + A v / 2  
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and with the notation 5 =  ( 1  -Av/2)/2 we arrive at the formula 

m AV &)= - 
bfi2[(21+ 1)!]1’2 1+Av/2  

where 

q ( x )  = lo’ dt  e x p ( z  5(1- t ) ) ( 1 -  t)‘-’( 1 -- 5 t )  , 

5 - 1  

Expanding the exponential function into a power series we have 

5 ‘+” 2x5 
q ( x )  = lo1 dt  (1 - r)’-( 1 -- t )  +% lo dt  ( 1  - r)’-’+l(  1 -L t ) ’ + ”  

5-1  5 - 1  
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(2.28) 

(2.29) 

(2.30) 

Conferring this with the integral representation of the function we obtain a series 

- 1 - U, 1; 1 - v + 2; -) 5 ( 1 - Y + 1) - ’  
5 -1  

- 1 - U ,  1 ;  l - v + 3 ; - ) ( 1 - ~ + 2 ) - ~  5 
A v 2  5 - 1  

- l - v , l ; l - v + 4 ; -  (2.31) 
2! 5 - 1  

+ 

in which the consecutive hypergeometric functions differ only in one index, so they 
can be calculated via a recurrence relation of Abramowitz and Stegun (1970) provided 
the first two functions are known. Of course this result is valid only on a very restricted 
area of the complex plane but it can be continued analytically. 

The matrix elements of the operator g;* needed for the normalisation of the 
wavefunction are determined by the aid of the well known operator identity 

d 
g ; * ( E )  = - E g ; ( E ) .  (2.32) 

Starting from the matrix elements of the operator g; we approximate the derivative 
with a finite difference. 

3. Numerical results 

To demonstrate the feasibility of the method, we present the energy and wavefunction 
of a resonant state, for which the asymptotics is more crucial than for a bound state. 
In our example a proton with quantum numbers 1 = 4, j = f moves in the field of a 
nucleus represented by a spherical Coulomb-like potential. The V of (1.8) has the form 

(3.1) 



with 

f ( r )  = -{1 -exp[(r- R,)/d]} 

and 

ZIZ2(e2/2R,)(3 - r'/Rf) r < R ,  
r >  R,. 

The parameter values Vo = 50.9 MeV, V,, = 5.8 MeV, Ro = R ,  = 7.06 fm, d = 0.75 fm, 
Z1 = 82, 2, = 1 and b = 2.69 fm-I were chosen. For comparison the exact numerical 
solution was determined with the code of Vertse et al (1982). Table 1 shows the 
convergence of the energy as a function of N. The exact value is (13.57 - 0.34i) MeV. 
In figure 1 the wavefunction belonging to N = 19 is shown. The agreement is excellent, 
the difference between the PSE and exact wavefunction cannot be displayed in the 
figure, the relative error being everywhere less than 0.01. 

We have found that the rate of convergence depends weakly on the parameter b 
of cs functions. The optimal parameter b is influenced mainly by the extent of the 
potential, so it can be scaled with a characteristic length parameter of the potential. 
In potentials, which are similar to our example, the optimal b is around 19/Ro. 

Table 1. The convergence of the PSE energy of the proton resonance with quantum numbers 
I = 4, j = f in the potential (3.1). A scaling parameter 6 = 2.69 fm-' was chosen. The exact 
energy is (13.57 -0.34i) MeV. 

N 

10 
I1 
12 
13 
14 
15 
16 
17 
18 
19 

13.330 -0.321i 
13.581 -0.308i 
13.621 -0.3281 
13.592 -0.3561 
13.570 - 0.3561 
13.567 -0.341i 
13.571 -0.3361 
13.573 -0.3383 
13.573 -0.340i 
13.571 -0.340i 

1 
I - 0.5 1- 

Figure 1. The radial wavefunction belonging to the state in table 1 with N = 19. The full 
and broken curves represent the real and imaginary part of the wavefunction, respectively. 
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4. Discussion 

In this paper we have generalised the potential separable expansion method to calculat- 
ing bound and resonant states in Coulomb-like potentials. We pointed out that the 
long-range part of the potential should not be truncated if we want to get a wavefunction 
with correct asymptotics. In this case the calculation of the matrix elements of the 
Coulomb-Green operator is required, but this seems to be hopeless in closed form if 
an HO basis is used. 

Attached to the fully elaborated (Kruppa and Papp 1985) HO formalism Gyarmati 
and Kruppa (1986) truncated the whole Coulomb-like potential, thus giving up the 
correct Coulomb asymptotics. To reach convergence they render the size parameter 
of the HO functions complex. However, due to the adequate treating of the Coulomb 
tail we could reach convergence in the same example on a considerably smaller basis. 

Summarising our results we can say the following. We succeeded in finding a basis, 
which makes the exact calculation of the Coulomb-Green operator possible. These 
Coulomb-Sturmian functions have a very simple form both in coordinate and momen- 
tum representation. The relationship among the matrix elements of the potential 
reduces the number of matrix elements to be calculated numerically. We have found 
simple recurrence relations for the matrix elements of Coulomb-Green operator and 
for the action of this operator on the cs functions. The starting points of these 
recurrence relations can be given in closed forms so, to calculate resonances, both of 
them can be continued analytically. We can say that the PSE method based on cs 
functions shares most of the advantages of that based on the HO functions and it gives 
wavefunctions with the correct asymptotics not only for short-range but also for 
Coulomb-like potentials. 

From the computational point of view this method can also compete with the HO 

based method. We have found that the code give the same results for double and 
extended precision. This means that the whole procedure is computationally well 
conditioned and the recurrence relations are sufficiently stable. 

There are numerous methods for bound state calculations in a Coulomb-like 
potentials but only few for Gamow states. The main advantage of our method over 
most of the others is that it can easily be extended to complicated systems, for example 
for those which have been solved so far with the HO based PSE method for short-range 
potentials. 
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